Category: Diet

Autophagy and protein degradation

Autophagy and protein degradation

proteih controls Body image and personal growth and Autophagy and protein degradation via degraddation with ERK1 Autophagy and protein degradation 34 ]. Auotphagy, X. As mentioned previously, p62 delivers ubiquitinated cargoes for autophagic degradation via the C-terminal OMAD and food addiction domain or the LIR domain, and then the PB1 domain promotes the process [ 26 ]. This work was supported by the National Research Foundation of Korea NRF grant funded by the Korea government MSIT NRFR1A5A and NRFR1A2B5B to Y. Heimer, S. Proteasome inhibition can activate autophagy, in which p62 is the bridge [ 72 ]. Autophagy and protein degradation

Autophagy and protein degradation -

J Mol Cell Cardiol. Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. Interaction domains of p a bridge between p62 and selective autophagy. DNA Cell Biol. Myeku N, Figueiredo-Pereira ME. Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy.

Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Moscat J, Diaz-Meco MT, Albert A, Campuzano S. Cell signaling and function organized by PB1 domain interactions. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M.

Structural basis for sorting mechanism of p62 in selective autophagy. Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation.

EMBO J. Nakamura K, Kimple AJ, Siderovski DP, Johnson GL. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J. The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. Lee SJ, Pfluger PT, Kim JY, Nogueiras R, Duran A, Pages G, Pouyssegur J, Tschop MH, Diaz-Meco MT, Moscat J.

A functional role for the pERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Rep. Puissant A, Fenouille N, Auberger P. Am J Cancer Res. CAS PubMed PubMed Central Google Scholar. Thompson HG, Harris JW, Wold BJ, Lin F, Brody JP.

p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Clague MJ, Urbe S. Ubiquitin: same molecule, different degradation pathways.

Ciechanover A, Stanhill A. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim Biophys Acta. Google Scholar. Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, Ho MW, Troncoso J, Gygi SP, Lee MK, Dawson VL, Dawson TM, Lim KL.

Lysine linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases.

Hum Mol Genet. Kravtsova-Ivantsiv Y, Sommer T, Ciechanover A. The lysinebased polyubiquitin chain proteasomal signal: not a single child anymore.

Angew Chem Int Ed Engl. Schreiber A, Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Shabek N, Herman-Bachinsky Y, Buchsbaum S, Lewinson O, Haj-Yahya M, Hejjaoui M, Lashuel HA, Sommer T, Brik A, Ciechanover A.

The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Long J, Gallagher TR, Cavey JR, Sheppard PW, Ralston SH, Layfield R, Searle MS.

Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V.

TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains.

Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.

Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC.

Alpha-Synuclein is degraded by both autophagy and the proteasome. Tian Z, Wang C, Hu C, Tian Y, Liu J, Wang X. Autophagic-lysosomal inhibition compromises ubiquitin-proteasome system performance in a p62 dependent manner in cardiomyocytes.

PLoS One. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H.

Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M.

Autophagy is required to maintain muscle mass. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice.

Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A. Ref 2 P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain.

Gal J, Strom AL, Kilty R, Zhang F, Zhu H. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. Paine MG, Babu JR, Seibenhener ML, Wooten MW.

Evidence for p62 aggregate formation: role in cell survival. Su H, Wang X. Autophagy and p62 in cardiac protein quality control. Nihira K, Miki Y, Ono K, Suzuki T, Sasano H. Cancer Sci. Knaevelsrud H, Simonsen A. Fighting disease by selective autophagy of aggregate-prone proteins.

Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT. p62 is a key regulator of nutrient sensing in the mTORC1 pathway.

Seglen PO, Gordon PB. Proc Natl Acad Sci U S A. Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, Juhasz G. Advantages and limitations of different pbased assays for estimating autophagic activity in Drosophila. Sahani MH, Itakura E, Mizushima N. Babu JR, Geetha T, Wooten MW. J Neurochem.

Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T. Pikkarainen M, Hartikainen P, Soininen H, Alafuzoff I. Li B, Hu Q, Xu R, Ren H, Fei E, Chen D, Wang G. Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence.

BMC Cell Biol. Choe JY, Jung HY, Park KY, Kim SK. Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1b expression.

Rheumatology Oxford. Article CAS Google Scholar. Cortes CJ, La Spada AR. Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos? Mol Cell Neurosci. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z.

PLoS Genet. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M.

Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q.

Keap1 facilitates pmediated ubiquitin aggregate clearance via autophagy. Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer RJ, Lee MS, Yamamoto M, Waguri S, Tanaka K, Komatsu M.

Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. p62 Stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress. Trends Cardiovasc Med.

Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK, Ng SS, Cho CH, Sung JJ, Wu WK. A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins.

Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. Amen T, Kaganovich D. Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci. Kaganovich D, Kopito R, Frydman J.

Misfolded proteins partition between two distinct quality control compartments. Yan J, Seibenhener ML, Calderilla-Barbosa L, Diaz-Meco MT, Moscat J, Jiang J, Wooten MW, Wooten MC. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. Mol Cell Biol.

Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy.

Hao R, Nanduri P, Rao Y, Panichelli RS, Ito A, Yoshida M, Yao TP. Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Hayashi K, Dan K, Goto F, Tshuchihashi N, Nomura Y, Fujioka M, Kanzaki S, Ogawa K.

The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. Cell Signal. Chang KH, Sengupta A, Nayak RC, Duran A, Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto D, Aronow BJ, Starczynowski DT, Civitelli R, Diaz-Meco MT, Moscat J, Cancelas JA.

Cell Rep. Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. Processing of autophagic protein LC3 by the 20S proteasome.

Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, Esposito T, Gennari L, Merlotti D, Rendina D, Rea SL, Sultana M, Searle MS, Layfield R.

Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Wei H, Wang C, Croce CM, Guan JL. Genes Dev. Download references. This study was supported by the National Natural Science Foundation of China No.

A and A and the Administration of Traditional Chinese Medicine of Guangdong Province No. WJL and LY conceived the structure and wrote this manuscript; WFH, LJG and ZGX designed the figures; HLW wrote about the ubiquitinated protein degradation pathways.

CY and HFL improved the structure and language of the manuscript; All authors read and approved the final manuscript. The Institute of Nephrology, Guangdong Medical University, Zhanjiang, Guangdong, , China. Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, , China.

You can also search for this author in PubMed Google Scholar. Correspondence to Hua Feng Liu. Open Access This article is distributed under the terms of the Creative Commons Attribution 4. Reprints and permissions. Liu, W.

et al. p62 links the autophagy pathway and the ubiqutin—proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21 , 29 Download citation. Received : 04 December Accepted : 07 December Published : 13 December Anyone you share the following link with will be able to read this content:.

Sorry, a shareable link is not currently available for this article. Provided by the Springer Nature SharedIt content-sharing initiative. Skip to main content. Search all BMC articles Search. Download PDF. Abstract The ubiquitin—proteasome system UPS and autophagy are two distinct and interacting proteolytic systems.

Full size image. Ubiquitin—proteasome system The ubiquitin—proteasome system UPS plays a critical role in the degradation of short-lived, misfolded and damaged proteins.

Autophagy Autophagy is a highly evolutionarily conserved degradation system in eukaryotes [ 11 ]. p62 p62 was the first selected autophagy adaptor discovered in mammals [ 11 , 21 , 22 ]. Ubiquitinated protein degradation pathway Ubiquitination is integral to the proteolytic system.

The role of p62 in autophagy The relationship between p62 and autophagy As mentioned previously, p62 delivers ubiquitinated cargoes for autophagic degradation via the C-terminal UBA domain or the LIR domain, and then the PB1 domain promotes the process [ 26 ].

p62 as an autophagic flux reporter p62 is widely used as a predictor of autophagic flux [ 2 , 61 ], since it is a thoroughly explored autophagic substrate. A role for p62 in the UPS Natura et al. Relationship of p62 with ups and autophagy Interdependence upon defective proteostasis Overexpressed p62 can enhance protein aggregation and has a protective effect on cell survival as described above.

Conclusion Because the UPS, autophagy and p62 are the interdependent elements of the protein quality control system, they must act in a networked manner to maintain proteostasis. Abbreviations HDAC6: Histone deacetylase 6 MTOC: The microtubule organizing center mTORC1: Mechanistic target of rapamycin complex 1 Nrf2: NF-E2-related factor 2 UPS: The ubiquitin—proteasome system αPKCs: Atypical protein kinases Cs.

References Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Article CAS PubMed Google Scholar Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Article CAS PubMed PubMed Central Google Scholar Castro A, Bernis C, Vigneron S, Labbe JC, Lorca T.

Article CAS PubMed Google Scholar Orlowski RZ. Article CAS PubMed Google Scholar Yao T, Ndoja A. Article CAS PubMed PubMed Central Google Scholar Goldberg AL. Article CAS PubMed Google Scholar Verma R, Aravind L, Oania R, McDonald WH, Yates 3rd JR, Koonin EV, Deshaies RJ.

Article CAS PubMed Google Scholar Hanna J, Finley D. Article CAS PubMed PubMed Central Google Scholar Hershko A, Ciechanover A. Article CAS PubMed Google Scholar Hochstrasser M. Article Google Scholar Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K.

Article CAS PubMed Google Scholar Yang Z, Klionsky DJ. Article CAS PubMed PubMed Central Google Scholar Rogov V, Dotsch V, Johansen T, Kirkin V. Article CAS PubMed Google Scholar Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, Hansen M.

Article CAS PubMed Google Scholar Xie Z, Klionsky DJ. Article CAS PubMed Google Scholar Klionsky DJ, Schulman BA. Article CAS PubMed PubMed Central Google Scholar Lamark T, Kirkin V, Dikic I, Johansen T. Article CAS PubMed Google Scholar Komatsu M, Ichimura Y. Article CAS PubMed Google Scholar Wei H, Guan JL.

Article PubMed PubMed Central Google Scholar Liu WJ, Luo MN, Tan J, Chen W, Huang LZ, Yang C, Pan Q, Li B, Liu HF. Article CAS PubMed Google Scholar Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. Article CAS PubMed Google Scholar Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T.

Article PubMed PubMed Central Google Scholar Shin J. Article CAS PubMed Google Scholar Wang X, Terpstra EJ.

Article CAS PubMed Google Scholar Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. Article CAS PubMed Google Scholar Myeku N, Figueiredo-Pereira ME.

Article CAS PubMed PubMed Central Google Scholar Kirkin V, McEwan DG, Novak I, Dikic I. Article CAS PubMed Google Scholar Johansen T, Lamark T.

Article CAS PubMed PubMed Central Google Scholar Moscat J, Diaz-Meco MT, Albert A, Campuzano S. Article CAS PubMed Google Scholar Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M.

Article CAS PubMed Google Scholar Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J. Article CAS PubMed PubMed Central Google Scholar Nakamura K, Kimple AJ, Siderovski DP, Johnson GL.

Article CAS PubMed Google Scholar Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J. Article CAS PubMed Google Scholar Lee SJ, Pfluger PT, Kim JY, Nogueiras R, Duran A, Pages G, Pouyssegur J, Tschop MH, Diaz-Meco MT, Moscat J.

Article CAS PubMed PubMed Central Google Scholar Puissant A, Fenouille N, Auberger P. CAS PubMed PubMed Central Google Scholar Thompson HG, Harris JW, Wold BJ, Lin F, Brody JP.

Article CAS PubMed Google Scholar Chen ZJ, Sun LJ. Article CAS PubMed Google Scholar Clague MJ, Urbe S. Article CAS PubMed Google Scholar Ciechanover A, Stanhill A. Google Scholar Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, Ho MW, Troncoso J, Gygi SP, Lee MK, Dawson VL, Dawson TM, Lim KL.

Article CAS PubMed Google Scholar Kravtsova-Ivantsiv Y, Sommer T, Ciechanover A. Article CAS PubMed Google Scholar Schreiber A, Peter M. Google Scholar Shabek N, Herman-Bachinsky Y, Buchsbaum S, Lewinson O, Haj-Yahya M, Hejjaoui M, Lashuel HA, Sommer T, Brik A, Ciechanover A. Article CAS PubMed Google Scholar Long J, Gallagher TR, Cavey JR, Sheppard PW, Ralston SH, Layfield R, Searle MS.

Article CAS PubMed Google Scholar Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J. Article CAS PubMed Google Scholar Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V.

Article CAS PubMed PubMed Central Google Scholar Behrends C, Harper JW. Article CAS PubMed Google Scholar Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Article CAS PubMed Google Scholar Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K.

Article CAS PubMed Google Scholar Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Article CAS PubMed Google Scholar Tian Z, Wang C, Hu C, Tian Y, Liu J, Wang X. Article PubMed PubMed Central Google Scholar Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H.

Article CAS PubMed Google Scholar Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Article CAS PubMed Google Scholar Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T.

Article CAS PubMed PubMed Central Google Scholar Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A. Article CAS PubMed PubMed Central Google Scholar Gal J, Strom AL, Kilty R, Zhang F, Zhu H.

Article CAS PubMed Google Scholar Paine MG, Babu JR, Seibenhener ML, Wooten MW. Article CAS PubMed Google Scholar Su H, Wang X. Article CAS PubMed PubMed Central Google Scholar Nihira K, Miki Y, Ono K, Suzuki T, Sasano H. Article CAS PubMed PubMed Central Google Scholar Knaevelsrud H, Simonsen A.

Article CAS PubMed Google Scholar Mizushima N, Yoshimori T, Levine B. Article CAS PubMed PubMed Central Google Scholar Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. Article CAS PubMed PubMed Central Google Scholar Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT.

Article CAS PubMed PubMed Central Google Scholar Seglen PO, Gordon PB. Article CAS PubMed PubMed Central Google Scholar Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, Juhasz G. Article CAS PubMed PubMed Central Google Scholar Sahani MH, Itakura E, Mizushima N.

Article CAS PubMed PubMed Central Google Scholar Babu JR, Geetha T, Wooten MW. Article CAS PubMed Google Scholar Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T. Article CAS PubMed Google Scholar Pikkarainen M, Hartikainen P, Soininen H, Alafuzoff I. Article CAS PubMed Google Scholar Li B, Hu Q, Xu R, Ren H, Fei E, Chen D, Wang G.

Article CAS PubMed PubMed Central Google Scholar Choe JY, Jung HY, Park KY, Kim SK. Article CAS Google Scholar Cortes CJ, La Spada AR. Article CAS PubMed PubMed Central Google Scholar Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z. Article PubMed PubMed Central Google Scholar Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N.

Article CAS PubMed Google Scholar Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M.

Article CAS PubMed Google Scholar Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q. Article CAS PubMed PubMed Central Google Scholar Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer RJ, Lee MS, Yamamoto M, Waguri S, Tanaka K, Komatsu M.

Article CAS PubMed PubMed Central Google Scholar Su H, Wang X. Article CAS PubMed PubMed Central Google Scholar Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK, Ng SS, Cho CH, Sung JJ, Wu WK.

Article CAS PubMed Google Scholar Johnston JA, Ward CL, Kopito RR. Article CAS PubMed PubMed Central Google Scholar Kopito RR. Article CAS PubMed Google Scholar Amen T, Kaganovich D.

Article CAS PubMed Google Scholar Kaganovich D, Kopito R, Frydman J. Article CAS PubMed PubMed Central Google Scholar Yan J, Seibenhener ML, Calderilla-Barbosa L, Diaz-Meco MT, Moscat J, Jiang J, Wooten MW, Wooten MC.

Article CAS PubMed PubMed Central Google Scholar Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. Article CAS PubMed PubMed Central Google Scholar Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP.

Article CAS PubMed PubMed Central Google Scholar Hao R, Nanduri P, Rao Y, Panichelli RS, Ito A, Yoshida M, Yao TP. Article CAS PubMed PubMed Central Google Scholar Hayashi K, Dan K, Goto F, Tshuchihashi N, Nomura Y, Fujioka M, Kanzaki S, Ogawa K. Article CAS PubMed Google Scholar Chang KH, Sengupta A, Nayak RC, Duran A, Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto D, Aronow BJ, Starczynowski DT, Civitelli R, Diaz-Meco MT, Moscat J, Cancelas JA.

Article CAS PubMed PubMed Central Google Scholar Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. Article CAS PubMed Google Scholar Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, Esposito T, Gennari L, Merlotti D, Rendina D, Rea SL, Sultana M, Searle MS, Layfield R.

Google Scholar Wei H, Wang C, Croce CM, Guan JL. Article CAS PubMed PubMed Central Google Scholar Download references. Acknowledgements Not applicable. Holen, I. Holtzman, E. Plenum Press, New York and London Book Google Scholar.

Hortin, G. Høyvik, H. Isenman, L. Judah, J. Kayalar, C. Khairallah, E. Eds H. Segal and D. Doyle, Academic, Press, New York Chapter Google Scholar. Klausner, R. Cell 62 — Knowles, S. Kominami, E. Kopitz, J. Kovács, A. Lardeux, B.

Evidence for selective autophagy. Le, A. Biochemical mapping of the degradative event among compartments of the secretory pathway. Lippincott-Schwartz, J.

Cell 54 , — Cell 56 — Locke, M. Loh, Y. USA 79 — Lotteau, V. Marzella, L. Morphologic characterization. Glaumann and F. Academic Press, London Mason, R. Mayorga, L. Transfer of immune complexes internalized via Fc receptors to an endosomal proteolytic compartment.

McElligott, M. Melmed, R. Selective autophagy and destruction of β-granules in intermediate cells of the rat pancreas induced by alloxan and streptozotocin. Cell Sci. Mizuno, K. Moore, H. Mortimore, G. Effects of short-term starvation. Eds N. Katunuma and E. Kominami, Japan Sci.

Press, Tokyo Evidence for a general control of proteolysis. Muesch, A. O'Hare, M. Acta 49— Oda, K. Orci, L. Nature 77— Otsuka, H. Parker, R. Impact on activity and degradation of the enzyme. Pelham, H. Pfeifer, U. Acta morphol. Plomp, P. Poli, A. Pontremoli, S. Poole, B. The effect of fresh medium, fluoride, and iodoacetate on the digestion of cellular protein protein of rat fibroblasts.

Prence, E. Press, O. Rapoport, T. Razooki Hasan, H. Refsnes, M. Studies on acquisition, desensitization and resensitization of isoproterenol-sensitive adenylate cyclase in primary culture. Rogers, S. Effects of intracellular location and the involvement of lysosomes.

Basic measurements. Rosenberg-Hasson, Y. Rotundo, R. Evidence for an endoglycosidase H-sensitive form in Golgi apparatus, sarcoplasmic reticulum, and clathrin-coated vesicles and its rapid degradation by a non-lysosomal mechanism.

Rønning, Ø. Sakiyama, H. Schwarze, P. Schworer, C. USA 76 — Seglen, P. Acta biol. Alan R. Grunnet and B. Munksgaard, Copenhagen , in press. Quantitative ultrastructural alterations in the lysosomal system.

Acta 29— Shen, W. Shite, S. Sidman, C. Cell 23 — Slavicek, J. Slot, L. Smith, R. Strauss, A. Strous, G. Tanaka, R. Lipid Res. Tanaka, Y. Tanner, L. Tooze, J. Tooze, S. Cell 60 — Von Zastrow, M. Warren, L. Wilde, C. Winkler, J. Woods, J. YaDeau, J. Zammit, V. Download references.

Department of Tissue Culture, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N, Oslo 3, Norway. Institute for Physiological Chemistry, University of Tübingen, D, Tübingen, Germany. You can also search for this author in PubMed Google Scholar.

Reprints and permissions. Autophagy and other vacuolar protein degradation mechanisms. Experientia 48 , — Download citation. Published : 15 February Issue Date : February Anyone you share the following link with will be able to read this content:. Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative. Abstract Autophagic degradation of cytoplasm including protein, RNA etc. Access this article Log in via an institution. References Achkar, C.

Article CAS PubMed Google Scholar Ahlberg, J. CAS Google Scholar Ahlberg, J. CAS PubMed Google Scholar Amara, J. Article CAS PubMed Google Scholar Amenta, J. Article CAS PubMed Central PubMed Google Scholar Amenta, J.

Article CAS PubMed Google Scholar Anderson, R. Article CAS PubMed Google Scholar Auteri, S. Article CAS PubMed Google Scholar Baccino, F. Article CAS Google Scholar Backer, J. Article CAS PubMed Central PubMed Google Scholar Backer, J.

Article CAS PubMed Google Scholar Bakke, O. Article CAS PubMed Google Scholar Balavoine, S. Article CAS PubMed Google Scholar Ballard, F. Article CAS PubMed Google Scholar Barile, F. Article CAS Google Scholar Barile, F. Article CAS Google Scholar Baxter, G.

Article CAS PubMed Google Scholar Berg, T. Article CAS PubMed Google Scholar Besterman, J. Article CAS PubMed Google Scholar Bienkowsky, R.

Article Google Scholar Blum, J. Article CAS Google Scholar Bohley, P. Google Scholar Bolender, R. Article CAS PubMed Central PubMed Google Scholar Bowser, R. Article CAS PubMed Google Scholar Braun, M.

Article CAS PubMed Central PubMed Google Scholar Briozzo, P. CAS PubMed Google Scholar Brodsky, F. Article CAS PubMed Google Scholar Cain, C.

Article CAS PubMed Central PubMed Google Scholar Capony, F. Article CAS PubMed Google Scholar Caro, L. Article CAS PubMed Google Scholar Chao, H. Article CAS PubMed Central PubMed Google Scholar Chen, C. Article CAS PubMed Google Scholar Chiang, H. Article CAS PubMed Google Scholar Clarke, B.

Article CAS PubMed Central PubMed Google Scholar Cupp, M. Article CAS PubMed Google Scholar Dahms, N. Article CAS PubMed Google Scholar Davidson, H. Article CAS PubMed Google Scholar De Curtis, L.

Article PubMed Central PubMed Google Scholar de Duve, G. Article Google Scholar Desbuquois, B. Article CAS PubMed Google Scholar Dice, J. CAS PubMed Google Scholar Diment, S. Article CAS PubMed Google Scholar Diment, S. Article CAS Google Scholar Diment, S.

Article CAS PubMed Google Scholar Doherty, J. Article CAS PubMed Google Scholar Dong, J. Article CAS PubMed Google Scholar Dunn, W. Article PubMed Google Scholar Dunn, W. Article CAS PubMed Google Scholar Fong, L. Article CAS PubMed Google Scholar Fuchs, R.

Article CAS PubMed Central PubMed Google Scholar Gal, S. Article CAS PubMed Google Scholar Gordon, P. CAS PubMed Google Scholar Gordon, P. Google Scholar Gordon, P. Article CAS Google Scholar Gordon, P. Article CAS PubMed Central PubMed Google Scholar Gorman, R. Article CAS PubMed Google Scholar Grant, K.

Article CAS PubMed Google Scholar Griffiths, G. Article CAS PubMed Google Scholar Grinde, B. Article CAS PubMed Google Scholar Guagliardi, L.

Article CAS PubMed Google Scholar Hare, J. Article CAS Google Scholar Hartl, F. Article CAS PubMed Google Scholar Haystead, T. Article CAS PubMed Google Scholar Helminen, H. Article CAS Google Scholar Hendil, K. Article CAS PubMed Google Scholar Hendil, K. Article CAS PubMed Central PubMed Google Scholar Henell, F.

Article CAS PubMed Google Scholar Herz, J. Article CAS PubMed Central PubMed Google Scholar Holen, I. CAS PubMed Google Scholar Holtzman, E. Book Google Scholar Hortin, G.

Article CAS PubMed Google Scholar Høyvik, H. Article PubMed Google Scholar Høyvik, H. Article Google Scholar Isenman, L. Article CAS PubMed Google Scholar Judah, J. Article CAS PubMed Google Scholar Kayalar, C. Article CAS PubMed Google Scholar Khairallah, E.

Chapter Google Scholar Klausner, R. Article CAS PubMed Google Scholar Knowles, S. Article CAS PubMed Central PubMed Google Scholar Knowles, S.

Autophagic degradation of cytoplasm including Aytophagy, RNA etc. is a non-selective bulk process, as Autophagy and protein degradation by ultrastructural evidence and by prtoein similarity in Infection control solutions sequestration progein of various cytosolic degradatiob with different half-lives. The initial autophagic Autophaggy step, performed by a poorly-characterized organelle called a phagophore, is subject tofeedback inhibition by Autophagy and protein degradation and amino acids, the effect of the latter being potentiated by insulin and antagonized by glucagon. Epinephrine and other adrenergic agonists inhibit autophagic sequestration through a prazosin-sensitive α 1 -adrenergic mechanism. The sequestration is also inhibited by cAMP and by protein phosphorylation as indicated by the effects of cyclic nucleotide analogues, phosphodiesterase inhibitors and okadaic acid. Asparagine specifically inhibits autophagic-lysosomal fusion without having any significant effects on autophagic sequestration, on intralysosomal degradation or on the endocytic pathway. Autophaged material that accumulates in prelysosomal vacuoles in the presence of asparagine is accessible to endocytosed enzymes, revealing the existence of an amphifunctional organelle, the amphisome. Thank you Prediabetes stress management visiting nature. You are using a browser version with limited Autophagj for Coping strategies for anxiety. To obtain Autophagy and protein degradation best experience, we recommend dfgradation use a more up ane Prediabetes stress management browser or turn off compatibility mode in Internet Explorer. In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. An Author Correction to this article was published on 12 April Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes.

Author: Vudolar

5 thoughts on “Autophagy and protein degradation

  1. Ich meine, dass Sie nicht recht sind. Ich biete es an, zu besprechen. Schreiben Sie mir in PM, wir werden reden.

Leave a comment

Yours email will be published. Important fields a marked *

Design by ThemesDNA.com