Category: Diet

Carbohydrate metabolism in muscle

Carbohydrate metabolism in muscle

Carbohydrate metabolism in muscle together, studies have demonstrated that elevations in insulin concentrations lead to metaolism increase Caebohydrate blood flow which is Carhohydrate Carbohydrate metabolism in muscle NO production, leading to increased glucose uptake. Insulin Dark chocolate cookies with its receptor and results in an increase in protein kinase B Aktthereby promoting GLUT4 translocation. Glycogenesis increases during exercise in exercising muscle. Mannose phosphate isomerase. Changes in body composition, including reduced lean muscle mass, are mostly responsible for this decrease. Publish with us Submission Guidelines For Reviewers Language editing services Submit manuscript. Fatty acids.


Metabolism - The Metabolic Map: Carbohydrates Please note that most musc,e these Guarana for weight loss are not musdle to carbohydrates Guarana for weight loss. Gluconeogenesis will be learned about in the protein muscls, because amino acids are a common substrate used for synthesizing glucose. Galactose and fructose metabolism is a logical place to begin looking at carbohydrate metabolism, before shifting focus to the preferred monosaccharide glucose. The figure below reminds you that in the liver, galactose and fructose have been phosphorylated. In the liver, galactosephosphate is converted to glucosephosphate, before finally being converted to glucosephosphate 1.

Carbohydrate metabolism in muscle -

Probably the most striking manifestation of dosage with this hormone is the rapid decrease in the concentration of the blood sugar, which sets in so promptly that it early suggested some process occurring in the blood itself as responsible for the sugar-diminishing effect.

Careful study of this has demonstrated conclusively that insulin does not influence the rate of glycolysis in blood; hence the hypoglycemia observed is not due to glycolysis. The liver, a storehouse of the sugar-forming glycogen, is not primarily concerned in the hypoglycemic action of insulin, for the characteristic effect of the latter continues even after exclusion of the hepatic tissues.

Artificial Intelligence Resource Center. Featured Clinical Reviews Screening for Atrial Fibrillation: US Preventive Services Task Force Recommendation Statement JAMA. X Facebook LinkedIn. This Issue. Share X Facebook Email LinkedIn. They depend on glycolysis and lactic acid production for rapid ATP production.

The NADH and FADH2 pass electrons on to the electron transport chain, which uses the transferred energy to produce ATP. As the terminal step in the electron transport chain, oxygen is the terminal electron acceptor and creates water inside the mitochondria.

Figure 3. Click to view a larger image. The process of anaerobic respiration converts glucose into two lactate molecules in the absence of oxygen or within erythrocytes that lack mitochondria.

During aerobic respiration, glucose is oxidized into two pyruvate molecules. The pyruvate molecules generated during glycolysis are transported across the mitochondrial membrane into the inner mitochondrial matrix, where they are metabolized by enzymes in a pathway called the Krebs cycle Figure 4.

The Krebs cycle is also commonly called the citric acid cycle or the tricarboxylic acid TCA cycle. During the Krebs cycle, high-energy molecules, including ATP, NADH, and FADH2, are created. NADH and FADH2 then pass electrons through the electron transport chain in the mitochondria to generate more ATP molecules.

Figure 4. During the Krebs cycle, each pyruvate that is generated by glycolysis is converted into a two-carbon acetyl CoA molecule. The acetyl CoA is systematically processed through the cycle and produces high- energy NADH, FADH2, and ATP molecules.

The three-carbon pyruvate molecule generated during glycolysis moves from the cytoplasm into the mitochondrial matrix, where it is converted by the enzyme pyruvate dehydrogenase into a two-carbon acetyl coenzyme A acetyl CoA molecule.

This reaction is an oxidative decarboxylation reaction. Acetyl CoA enters the Krebs cycle by combining with a four-carbon molecule, oxaloacetate, to form the six-carbon molecule citrate, or citric acid, at the same time releasing the coenzyme A molecule.

The six-carbon citrate molecule is systematically converted to a five-carbon molecule and then a four-carbon molecule, ending with oxaloacetate, the beginning of the cycle. Along the way, each citrate molecule will produce one ATP, one FADH2, and three NADH.

The FADH2 and NADH will enter the oxidative phosphorylation system located in the inner mitochondrial membrane. In addition, the Krebs cycle supplies the starting materials to process and break down proteins and fats.

To start the Krebs cycle, citrate synthase combines acetyl CoA and oxaloacetate to form a six-carbon citrate molecule; CoA is subsequently released and can combine with another pyruvate molecule to begin the cycle again.

The aconitase enzyme converts citrate into isocitrate. In two successive steps of oxidative decarboxylation, two molecules of CO2 and two NADH molecules are produced when isocitrate dehydrogenase converts isocitrate into the five-carbon α-ketoglutarate, which is then catalyzed and converted into the four-carbon succinyl CoA by α-ketoglutarate dehydrogenase.

The enzyme succinyl CoA dehydrogenase then converts succinyl CoA into succinate and forms the high-energy molecule GTP, which transfers its energy to ADP to produce ATP. Succinate dehydrogenase then converts succinate into fumarate, forming a molecule of FADH2.

Oxaloacetate is then ready to combine with the next acetyl CoA to start the Krebs cycle again see Figure 4. For each turn of the cycle, three NADH, one ATP through GTP , and one FADH2 are created.

Each carbon of pyruvate is converted into CO2, which is released as a byproduct of oxidative aerobic respiration. The electron transport chain ETC uses the NADH and FADH 2 produced by the Krebs cycle to generate ATP.

Electrons from NADH and FADH 2 are transferred through protein complexes embedded in the inner mitochondrial membrane by a series of enzymatic reactions. In the presence of oxygen, energy is passed, stepwise, through the electron carriers to collect gradually the energy needed to attach a phosphate to ADP and produce ATP.

The role of molecular oxygen, O 2 , is as the terminal electron acceptor for the ETC. This means that once the electrons have passed through the entire ETC, they must be passed to another, separate molecule. This is the basis for your need to breathe in oxygen.

Without oxygen, electron flow through the ETC ceases. Figure 5. The electrons released from NADH and FADH 2 are passed along the chain by each of the carriers, which are reduced when they receive the electron and oxidized when passing it on to the next carrier.

Each of these reactions releases a small amount. The accumulation of these protons in the space between the membranes creates a proton gradient with respect to the mitochondrial matrix. Also embedded in the inner mitochondrial membrane is an amazing protein pore complex called ATP synthase.

This rotation enables other portions of ATP synthase to encourage ADP and P i to create ATP. In accounting for the total number of ATP produced per glucose molecule through aerobic respiration, it is important to remember the following points:.

Therefore, for every glucose molecule that enters aerobic respiration, a net total of 36 ATPs are produced see Figure 6. Figure 6. Carbohydrate metabolism involves glycolysis, the Krebs cycle, and the electron transport chain.

Gluconeogenesis is the synthesis of new glucose molecules from pyruvate, lactate, glycerol, or the amino acids alanine or glutamine. This process takes place primarily in the liver during periods of low glucose, that is, under conditions of fasting, starvation, and low carbohydrate diets.

So, the question can be raised as to why the body would create something it has just spent a fair amount of effort to break down? Certain key organs, including the brain, can use only glucose as an energy source; therefore, it is essential that the body maintain a minimum blood glucose concentration.

When the blood glucose concentration falls below that certain point, new glucose is synthesized by the liver to raise the blood concentration to normal. Gluconeogenesis is not simply the reverse of glycolysis. There are some important differences Figure 7. Pyruvate is a common starting material for gluconeogenesis.

First, the pyruvate is converted into oxaloacetate. Oxaloacetate then serves as a substrate for the enzyme phosphoenolpyruvate carboxykinase PEPCK , which transforms oxaloacetate into phosphoenolpyruvate PEP.

From this step, gluconeogenesis is nearly the reverse of glycolysis. PEP is converted back into 2-phosphoglycerate, which is converted into 3-phosphoglycerate.

Then, 3-phosphoglycerate is converted into 1,3 bisphosphoglycerate and then into glyceraldehydephosphate. Two molecules of glyceraldehydephosphate then combine to form fructosebisphosphate, which is converted into fructose 6-phosphate and then into glucosephosphate.

Finally, a series of reactions generates glucose itself. In gluconeogenesis as compared to glycolysis , the enzyme hexokinase is replaced by glucosephosphatase, and the enzyme phosphofructokinase-1 is replaced by fructose-1,6-bisphosphatase.

This helps the cell to regulate glycolysis and gluconeogenesis independently of each other. As will be discussed as part of lipolysis, fats can be broken down into glycerol, which can be phosphorylated to form dihydroxyacetone phosphate or DHAP. DHAP can either enter the glycolytic pathway or be used by the liver as a substrate for gluconeogenesis.

The muscles still rely on anaerobic energy for the initial 1—2 min when transitioning from rest to an aerobic power output, but then aerobic metabolism dominates. To produce the required ATP, the respiratory or electron-transport chain in the mitochondria requires the following substrates: reducing equivalents in the form of NADH and FADH 2 , free ADP, P i and O 2 Fig.

The respiratory and cardiovascular systems ensure the delivery of O 2 to contracting muscles, and the by-products of ATP utilization in the cytoplasm ADP and P i are transported back into the mitochondria for ATP resynthesis. The processes that move ATP out of the mitochondria and ADP and P i back into the mitochondria are being intensely studied and appear to be more heavily regulated than previously thought 52 , In the presence of ample O 2 and ADP and P i in the mitochondria, the increase in ADP concentration with exercise is believed to activate the respiratory chain to produce ATP In terms of the metabolic pathways, the tricarboxylic acid TCA cycle in the mitochondria specializes in producing reducing equivalents and accepts acetyl-CoA mainly from carbohydrate and fat and other fuels to do so.

Substrate accumulation and local regulators fine-tune the flux through the dehydrogenases, and a third enzyme, citrate synthase, controls TCA-cycle flux. Additional NADH is produced both in the glycolytic pathway, after which it is shuttled from the cytoplasm into the mitochondria, and in the PDH reaction, which occurs in the mitochondria.

The transport protein GLUT4 facilitates the influx of glucose into cells, and increases in glucose delivery, secondary to enhanced muscle blood flow, and intramuscular glucose metabolism ensure that the gradient for glucose diffusion is maintained during exercise Translocation of GLUT4 is a fundamental event in exercise-induced muscle glucose uptake, and its regulation has been well studied Transport proteins for fat are also translocated to the muscle membrane mainly plasma membrane fatty acid—binding protein and mitochondrial membranes mainly fatty acid translocase FAT, also known as CD36 , where they transport fatty acids into cells and mitochondria 59 , The fatty acids that are transported into the cytoplasm of the cell and released from IMTG must also be transported across the mitochondrial membranes with the help of the carnitine palmitoyl transferase CPT I system and fat-transport proteins, mainly FAT CD36 61 , Once inside the mitochondria, fat enters the β-oxidation pathway, which produces acetyl-CoA and reducing equivalents NADH and FADH 2 , and the long-chain nature of fatty acids results in generation of large amounts of aerobic ATP Box 1.

In these situations, fuel use shifts to carbohydrate, and reliance on fat is decreased Fig. However, if the endurance event is extended, the liver and skeletal muscle glycogen stores may become exhausted, thereby requiring athletes to slow down.

Researchers have now identified several sites where fat metabolism is downregulated at high aerobic exercise intensities, including decreased fatty acid release from adipose tissue and therefore less fatty acid transport into cells; decreased activation of hormone-sensitive lipase and possibly adipose triglyceride lipase; less IMTG breakdown; and inhibition of CPT I activity as a result of small decreases in muscle pH, decreased CPT I sensitivity to carnitine and possibly low levels of cytoplasmic carnitine-reducing mitochondrial-membrane transport 37 , In many team sports, a high aerobic ability is needed for players to move about the field or playing surface, whereas sprints and anaerobic ATP , as dictated by the game, are added to the contribution of aerobic ATP.

This scenario is repeated many times during a game, and carbohydrate provides most of the aerobic fuel and much of the anaerobic fuel. Unsurprisingly, almost every regulatory aspect of carbohydrate metabolism is designed for rapid provision of ATP. Carbohydrate is the only fuel that can be used for both aerobic and anaerobic ATP production, and both systems are activated very quickly during transitions from rest to exercise and from one power output to a higher power output.

In addition, the processes that provide fatty acids to the muscles and the pathways that metabolize fat and provide ATP in muscles are slower than the carbohydrate pathways.

However, in events requiring long periods of exercise at submaximal power outputs, fat can provide energy for long periods of time and has a much larger ATP-generating capacity than carbohydrate. Fat oxidation also contributes energy in recovery from exercise or rest periods between activity.

Another important aspect of metabolism in stop-and-go sports is the ability to rapidly resynthesize PCr when the exercise intensity falls to low levels or athletes rest. In these situations, continued aerobic production of ATP fuels the regeneration of PCr such that it can be completely recovered in 60— s ref.

This production is extremely important for the ability to repeatedly sprint in stop-and-go or intermittent sports. Recovery from prolonged sprinting 20—s and sustained high glycolytic flux is slower, because the associated muscle acidity requires minutes, not seconds, to recover and can limit performance 4 , Importantly, other fuels can provide aerobic energy in cells during exercise, including amino acids, acetate, medium-chain triglycerides, and the ketones β-hydroxybutyrate and acetoacetic acid.

Although these fuels can be used to spare the use of fat and carbohydrate in some moderate-intensity exercise situations, they lack the rate of energy provision needed to fuel intense aerobic exercise, because the metabolic machinery for these fuels is not designed for rapid energy provision.

Alternative fuels cannot match carbohydrate in terms of the rate of aerobic energy provision 9 , and these fuels cannot be used to produce anaerobic energy in the absence of oxygen. Sex may have roles in the regulation of skeletal muscle metabolism.

Males and females are often assumed to respond similarly to acute exercise and exercise training, but most of the work cited in this Review involved male participants. Clear differences exist between males and females—including haemoglobin concentrations, muscle mass and reproductive-hormone levels—and have been shown to affect metabolism and exercise performance, thus making perfect comparisons between males and females very difficult.

The potential sex differences in metabolism are briefly mentioned in Box 3 , and more detailed discussion can be found in a review by Kiens One issue in the study of the regulation of exercise metabolism in skeletal muscle is that much of the available data has been derived from studies on males.

Although the major principles controlling the regulation of metabolism appear to hold true for both females and males, some differences have been noted. Although one might argue that completely matching males and females is impossible when studying metabolism, early work with well-trained track athletes has reported no differences in skeletal muscle enzyme activity, fibre-type composition and fat oxidation between men and women , However, more recent work has reported that a larger percentage of whole-body fuel use is derived from fat in females exercising at the same relative submaximal intensity, and this effect is likely to be related to circulating oestrogen levels , , , , , In addition, supplementation with oestrogen in males decreases carbohydrate oxidation and increases fat oxidation during endurance exercise These results suggest that females may be better suited to endurance exercise than males.

Another area that has been investigated is the effects of menstrual phase and menstrual status on the regulation of skeletal muscle metabolism. Generally, studies examining exercise in the luteal and follicular phases have reported only minor or no changes in fat and carbohydrate metabolism at various exercise intensities , , , Additional work examining the regulation of metabolism in well-trained female participants in both phases of the menstrual cycle, and with varied menstrual cycles, during exercise at the high aerobic and supramaximal intensities commensurate with elite sports, is warranted.

Sports performance is determined by many factors but is ultimately limited by the development of fatigue, such that the athletes with the greatest fatigue resistance often succeed. However, there can be a fine line between glory and catastrophe, and the same motivation that drives athletes to victory can at times push them beyond their limits.

Fatigue is the result of a complex interplay among central neural regulation, neuromuscular function and the various physiological processes that support skeletal muscle performance 1. It manifests as a decrease in the force or power-producing capacity of skeletal muscle and an inability to maintain the exercise intensity needed for ultimate success.

Over the years, considerable interest has been placed on the relative importance of central neural and peripheral muscle factors in the aetiology of fatigue. All that I am, I am because of my mind. Perhaps the two major interventions used to enhance fatigue resistance are regular training and nutrition 70 , and the interactions between them have been recognized We briefly review the effects of training and nutrition on skeletal muscle energy metabolism and exercise performance, with a focus on substrate availability and metabolic end products.

In relation to dietary supplements, we have limited our discussion to those that have been reasonably investigated for efficacy in human participants Regular physical training is an effective strategy for enhancing fatigue resistance and exercise performance, and many of these adaptations are mediated by changes in muscle metabolism and morphology.

Such training is also associated with the cardiovascular and metabolic benefits often observed with traditional endurance training One hallmark adaptation to endurance exercise training is increased oxygen-transport capacity, as measured by VO 2 max 78 , thus leading to greater fatigue resistance and enhanced exercise performance The other is enhanced skeletal muscle mitochondrial density 80 , a major factor contributing to decreased carbohydrate utilization and oxidation and lactate production 81 , 82 , increased fat oxidation and enhanced endurance exercise performance The capacity for muscle carbohydrate oxidation also increases, thereby enabling maintenance of a higher power output during exercise and enhanced performance Finally, resistance training results in increased strength, neuromuscular function and muscle mass 85 , effects that can be potentiated by nutritional interventions, such as increased dietary protein intake The improved performance is believed to be due to enhanced ATP resynthesis during exercise as a result of increased PCr availability.

Some evidence also indicates that creatine supplementation may increase muscle mass and strength during resistance training No major adverse effects of creatine supplementation have been observed in the short term, but long-term studies are lacking.

Creatine remains one of the most widely used sports-related dietary supplements. The importance of carbohydrate for performance in strenuous exercise has been recognized since the early nineteenth century, and for more than 50 years, fatigue during prolonged strenuous exercise has been associated with muscle glycogen depletion 13 , Muscle glycogen is critical for ATP generation and supply to all the key ATPases involved in excitation—contraction coupling in skeletal muscle Recently, prolonged exercise has been shown to decrease glycogen in rodent brains, thus suggesting the intriguing possibility that brain glycogen depletion may contribute to central neural fatigue Muscle glycogen availability may also be important for high-intensity exercise performance Blood glucose levels decline during prolonged strenuous exercise, because the liver glycogen is depleted, and increased liver gluconeogenesis is unable to generate glucose at a rate sufficient to match skeletal muscle glucose uptake.

Maintenance of blood glucose levels at or slightly above pre-exercise levels by carbohydrate supplementation maintains carbohydrate oxidation, improves muscle energy balance at a time when muscle glycogen levels are decreased and delays fatigue 20 , 97 , Glucose ingestion during exercise has minimal effects on net muscle glycogen utilization 97 , 99 , but increases muscle glucose uptake and markedly decreases liver glucose output , , because the gut provides most glucose to the bloodstream.

Importantly, although carbohydrate ingestion delays fatigue, it does not prevent fatigue, and many factors clearly contribute to fatigue during prolonged strenuous exercise. Because glucose is the key substrate for the brain, central neural fatigue may develop during prolonged exercise as a consequence of hypoglycaemia and decreased cerebral glucose uptake Carbohydrate ingestion exerts its benefit by increasing cerebral glucose uptake and maintaining central neural drive NH 3 can cross the blood—brain barrier and has the potential to affect central neurotransmitter levels and central neural fatigue.

Of note, carbohydrate ingestion attenuates muscle and plasma NH 3 accumulation during exercise , another potential mechanism through which carbohydrate ingestion exerts its ergogenic effect. Enhanced exercise performance has also been observed from simply having carbohydrate in the mouth, an effect that has been linked to activation of brain centres involved in motor control Increased plasma fatty acid availability decreases muscle glycogen utilization and carbohydrate oxidation during exercise , , High-fat diets have also been proposed as a strategy to decrease reliance on carbohydrate and improve endurance performance.

Other studies have demonstrated increased fat oxidation and lower rates of muscle glycogen use and carbohydrate oxidation after adaptation to a short-term high-fat diet, even with restoration of muscle glycogen levels, but no effect on endurance exercise performance , If anything, high-intensity exercise performance is impaired on the high-fat diet , apparently as a result of an inability to fully activate glycogenolysis and PDH during intense exercise Furthermore, a high-fat diet has been shown to impair exercise economy and performance in elite race walkers A related issue with high-fat, low carbohydrate diets is the induction of nutritional ketosis after 2—3 weeks.

However, when this diet is adhered to for 3 weeks, and the concentrations of ketone bodies are elevated, a decrease in performance has been observed in elite race walkers The rationale for following this dietary approach to optimize performance has been called into question Although training on a high-fat diet appears to result in suboptimal adaptations in previously untrained participants , some studies have reported enhanced responses to training with low carbohydrate availability in well-trained participants , Over the years, endurance athletes have commonly undertaken some of their training in a relatively low-carbohydrate state.

However, maintaining an intense training program is difficult without adequate dietary carbohydrate intake Furthermore, given the heavy dependence on carbohydrate during many of the events at the Olympics 9 , the most effective strategy for competition would appear to be one that maximizes carbohydrate availability and utilization.

Nutritional ketosis can also be induced by the acute ingestion of ketone esters, which has been suggested to alter fuel preference and enhance performance The metabolic state induced is different from diet-induced ketosis and has the potential to alter the use of fat and carbohydrate as fuels during exercise.

However, published studies on trained male athletes from at least four independent laboratories to date do not support an increase in performance. Acute ingestion of ketone esters has been found to have no effect on 5-km and km trial performance , , or performance during an incremental cycling ergometer test A further study has reported that ketone ester ingestion decreases performance during a The rate of ketone provision and metabolism in skeletal muscle during high-intensity exercise appears likely to be insufficient to substitute for the rate at which carbohydrate can provide energy.

Early work on the ingestion of high doses of caffeine 6—9 mg caffeine per kg body mass 60 min before exercise has indicated enhanced lipolysis and fat oxidation during exercise, decreased muscle glycogen use and increased endurance performance in some individuals , , These effects appear to be a result of caffeine-induced increases in catecholamines, which increase lipolysis and consequently fatty acid concentrations during the rest period before exercise.

After exercise onset, these circulating fatty acids are quickly taken up by the tissues of the body 10—15 min , fatty acid concentrations return to normal, and no increases in fat oxidation are apparent. Importantly, the ergogenic effects of caffeine have also been reported at lower caffeine doses ~3 mg per kg body mass during exercise and are not associated with increased catecholamine and fatty acid concentrations and other physiological alterations during exercise , This observation suggests that the ergogenic effects are mediated not through metabolic events but through binding to adenosine receptors in the central and peripheral nervous systems.

Caffeine has been proposed to increase self-sustained firing, as well as voluntary activation and maximal force in the central nervous system, and to decrease the sensations associated with force, pain and perceived exertion or effort during exercise in the peripheral nervous system , The ingestion of low doses of caffeine is also associated with fewer or none of the adverse effects reported with high caffeine doses anxiety, jitters, insomnia, inability to focus, gastrointestinal unrest or irritability.

Contemporary caffeine research is focusing on the ergogenic effects of low doses of caffeine ingested before and during exercise in many forms coffee, capsules, gum, bars or gels , and a dose of ~ mg caffeine has been argued to be optimal for exercise performance , The potential of supplementation with l -carnitine has received much interest, because this compound has a major role in moving fatty acids across the mitochondrial membrane and regulating the amount of acetyl-CoA in the mitochondria.

The need for supplemental carnitine assumes that a shortage occurs during exercise, during which fat is used as a fuel. Although this outcome does not appear to occur during low-intensity and moderate-intensity exercise, free carnitine levels are low in high-intensity exercise and may contribute to the downregulation of fat oxidation at these intensities.

However, oral supplementation with carnitine alone leads to only small increases in plasma carnitine levels and does not increase the muscle carnitine content An insulin level of ~70 mU l —1 is required to promote carnitine uptake by the muscle However, to date, there is no evidence that carnitine supplementation can improve performance during the higher exercise intensities common to endurance sports.

NO is an important bioactive molecule with multiple physiological roles within the body. It is produced from l -arginine via the action of nitric oxide synthase and can also be formed by the nonenzymatic reduction of nitrate and nitrite. The observation that dietary nitrate decreases the oxygen cost of exercise has stimulated interest in the potential of nitrate, often ingested in the form of beetroot juice, as an ergogenic aid during exercise.

Indeed, several studies have observed enhanced exercise performance associated with lower oxygen cost and increased muscle efficiency after beetroot-juice ingestion , , The effect of nitrate supplementation appears to be less apparent in well-trained athletes , , although results in the literature are varied Dietary nitrate supplementation may have beneficial effects through an improvement in excitation—contraction coupling , , because supplementation with beetroot juice does not alter mitochondrial efficiency in human skeletal muscle , and the results with inorganic nitrate supplementation have been equivocal , Lactate is not thought to have a major negative effect on force and power generation and, as mentioned earlier, is an important metabolic intermediate and signalling molecule.

Of greater importance is the acidosis arising from increased muscle metabolism and strong ion fluxes. In humans, acidosis does not appear to impair maximal isometric-force production, but it does limit the ability to maintain submaximal force output , thus suggesting an effect on energy metabolism and ATP generation Ingestion of oral alkalizers, such as bicarbonate, is often associated with increased high-intensity exercise performance , , partly because of improved energy metabolism and ionic regulation , As previously mentioned, high-intensity exercise training increases muscle buffer capacity 74 , A major determinant of the muscle buffering capacity is carnosine content, which is higher in sprinters and rowers than in marathon runners or untrained individuals Ingestion of β-alanine increases muscle carnosine content and enhances high-intensity exercise performance , During exercise, ROS, such as superoxide anions, hydrogen peroxide and hydroxyl radicals, are produced and have important roles as signalling molecules mediating the acute and chronic responses to exercise However, ROS accumulation at higher levels can negatively affect muscle force and power production and induce fatigue 68 , Exercise training increases the levels of key antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase , and non-enzymatic antioxidants reduced glutathione, β-carotene, and vitamins C and E can counteract the negative effects of ROS.

Whether dietary antioxidant supplementation can improve exercise performance is equivocal , although ingestion of N -acetylcysteine enhances muscle oxidant capacity and attenuates muscle fatigue during prolonged exercise Some reports have suggested that antioxidant supplementation may potentially attenuate skeletal muscle adaptation to regular exercise , , Overall, ROS may have a key role in mediating adaptations to acute and chronic exercise but, when they accumulate during strenuous exercise, may exert fatigue effects that limit exercise performance.

The negative effects of hyperthermia are potentiated by sweating-induced fluid losses and dehydration , particularly decreased skeletal muscle blood flow and increased muscle glycogen utilization during exercise in heat Increased plasma catecholamines and elevated muscle temperatures also accelerate muscle glycogenolysis during exercise in heat , , Strategies to minimize the negative effects of hyperthermia on muscle metabolism and performance include acclimation, pre-exercise cooling and fluid ingestion , , , To meet the increased energy needs of exercise, skeletal muscle has a variety of metabolic pathways that produce ATP both anaerobically requiring no oxygen and aerobically.

These pathways are activated simultaneously from the onset of exercise to precisely meet the demands of a given exercise situation. Although the aerobic pathways are the default, dominant energy-producing pathways during endurance exercise, they require time seconds to minutes to fully activate, and the anaerobic systems rapidly in milliseconds to seconds provide energy to cover what the aerobic system cannot provide.

Anaerobic energy provision is also important in situations of high-intensity exercise, such as sprinting, in which the requirement for energy far exceeds the rate that the aerobic systems can provide. This situation is common in stop-and-go sports, in which transitions from lower-energy to higher-energy needs are numerous, and provision of both aerobic and anaerobic energy contributes energy for athletic success.

Together, the aerobic energy production using fat and carbohydrate as fuels and the anaerobic energy provision from PCr breakdown and carbohydrate use in the glycolytic pathway permit Olympic athletes to meet the high energy needs of particular events or sports.

The various metabolic pathways are regulated by a range of intramuscular and hormonal signals that influence enzyme activation and substrate availability, thus ensuring that the rate of ATP resynthesis is closely matched to the ATP demands of exercise.

Regular training and various nutritional interventions have been used to enhance fatigue resistance via modulation of substrate availability and the effects of metabolic end products. The understanding of exercise energy provision, the regulation of metabolism and the use of fat and carbohydrate fuels during exercise has increased over more than years, on the basis of studies using various methods including indirect calorimetry, tissue samples from contracting skeletal muscle, metabolic-tracer sampling, isolated skeletal muscle preparations, and analysis of whole-body and regional arteriovenous blood samples.

However, in virtually all areas of the regulation of fat and carbohydrate metabolism, much remains unknown. The introduction of molecular biology techniques has provided opportunities for further insights into the acute and chronic responses to exercise and their regulation, but even those studies are limited by the ability to repeatedly sample muscle in human participants to fully examine the varied time courses of key events.

The ability to fully translate findings from in vitro experiments and animal studies to exercising humans in competitive settings remains limited. The field also continues to struggle with measures specific to the various compartments that exist in the cell, and knowledge remains lacking regarding the physical structures and scaffolding inside these compartments, and the communication between proteins and metabolic pathways within compartments.

A clear example of these issues is in studying the events that occur in the mitochondria during exercise. One area that has not advanced as rapidly as needed is the ability to non-invasively measure the fuels, metabolites and proteins in the various important muscle cell compartments that are involved in regulating metabolism during exercise.

Although magnetic resonance spectroscopy has been able to measure certain compounds non-invasively, measuring changes that occur with exercise at the molecular and cellular levels is generally not possible.

Some researchers are investigating exercise metabolism at the whole-body level through a physiological approach, and others are examining the intricacies of cell signalling and molecular changes through a reductionist approach.

New opportunities exist for the integrated use of genomics, proteomics, metabolomics and systems biology approaches in data analyses, which should provide new insights into the molecular regulation of exercise metabolism. Many questions remain in every area of energy metabolism, the regulation of fat and carbohydrate metabolism during exercise, optimal training interventions and the potential for manipulation of metabolic responses for ergogenic benefits.

Exercise biology will thus continue to be a fruitful research area for many years as researchers seek a greater understanding of the metabolic bases for the athletic successes that will be enjoyed and celebrated during the quadrennial Olympic festival of sport.

Hawley, J. Integrative biology of exercise. Cell , — Article CAS PubMed Google Scholar. Sahlin, K. Energy supply and muscle fatigue in humans. Acta Physiol. Medbø, J. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.

Article PubMed Google Scholar. Parolin, M. et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. CAS PubMed Google Scholar.

Greenhaff, P. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. Article Google Scholar. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise.

Tesch, P. Muscle metabolism during intense, heavy-resistance exercise. Koopman, R. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Carbohydrate dependence during prolonged, intense endurance exercise.

Sports Med. Carbohydrate dependence during marathon running. Sports Exerc. PubMed Google Scholar. Romijn, J. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. van Loon, L. The effects of increasing exercise intensity on muscle fuel utilisation in humans.

Bergström, J. A study of the glycogen metabolism during exercise in man. Wahren, J. Glucose metabolism during leg exercise in man.

Article CAS PubMed PubMed Central Google Scholar. Ahlborg, G. Substrate turnover during prolonged exercise in man. Watt, M. Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. Article CAS Google Scholar. Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans.

Article PubMed CAS Google Scholar. Wasserman, D. Four grams of glucose. Coggan, A. Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men. Coyle, E. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue.

Horowitz, J. Lipid metabolism during endurance exercise. Kiens, B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Stellingwerff, T. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies.

Spriet, L. An enzymatic approach to lactate production in human skeletal muscle during exercise. Brooks, G. The lactate shuttle during exercise and recovery. Miller, B. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion.

Lactate elimination and glycogen resynthesis after intense bicycling. Hashimoto, T. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J.

Takahashi, H. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Metab 1 , — Scheiman, J.

Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Rennie, M. Effect of exercise on protein turnover in man. Wagenmakers, A. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise.

Howarth, K. Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. McKenzie, S. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans.

Wilkinson, S. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle.

Egan, B. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. New insights into the interaction of carbohydrate and fat metabolism during exercise. Hargreaves, M. Exercise metabolism: fuels for the fire. Cold Spring Harb.

Article PubMed PubMed Central CAS Google Scholar. Richter, E. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Gaitanos, G. Human muscle metabolism during intermittent maximal exercise. Kowalchuk, J. Factors influencing hydrogen ion concentration in muscle after intense exercise.

Howlett, R. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Wojtaszewski, J. Chen, Z. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Stephens, T. Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise.

Yu, M. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. Rose, A. McConell, G. Hoffman, N. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates.

Nelson, M. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry.

EMBO J. Needham, E. Phosphoproteomics of acute cell stressors targeting exercise signaling networks reveal drug interactions regulating protein secretion. Cell Rep. e6 Perry, C. Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle.

Miotto, P. In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport.

Holloway, G. Nutrition and training influences on the regulation of mitochondrial adenosine diphosphate sensitivity and bioenergetics. Suppl 1. Article PubMed PubMed Central Google Scholar. Effects of dynamic exercise intensity on the activation of hormone-sensitive lipase in human skeletal muscle.

Talanian, J. Beta-adrenergic regulation of human skeletal muscle hormone sensitive lipase activity during exercise onset. CAS Google Scholar. Exercise, GLUT4, and skeletal muscle glucose uptake. Sylow, L. Exercise-stimulated glucose uptake: regulation and implications for glycaemic control.

Bradley, N. Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle.

Guarana for weight loss Experts is powered by VIVO. Toggle navigation. Fat metabolism cycle People Departments Research About Login. abstract The primary im of the present Carbohydrzte was to determine whether intramuscular triacylglycerol IMTG utilization Metabopism significantly to the increase in lipid oxidation during recovery from exercise, as determined from the muscle biopsy technique. In addition, we also examined the regulation of pyruvate dehydrogenase PDHa and changes in muscle acetyl units during an 18 h recovery period after glycogen-depleting exercise. Duplicate muscle biopsies were obtained at exhaustion, and 3, 6 and 18 h of recovery. Carbohydrate metabolism in muscle

Author: Dar

2 thoughts on “Carbohydrate metabolism in muscle

Leave a comment

Yours email will be published. Important fields a marked *

Design by